Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis.
نویسندگان
چکیده
Post-transcriptional repression of porin synthesis has emerged as a major function of Hfq-dependent, small non-coding RNAs (sRNAs). Many enterobacteria express OmpX-like porins, a family of outer membrane proteins whose physiological roles and structural properties have been studied intensively. While regulatory sRNAs have been identified for most major and many minor porins of Salmonella and Escherichia coli, a post-transcriptional regulator of OmpX levels has never been found. Here, we have taken a 'reverse target search' approach by systematic inactivation of Salmonella sRNA genes, and screening 35 sRNA deletion strains for effects on OmpX synthesis. We have identified the Hfq-dependent CyaR (formerly RyeE) sRNA as an ompX repressor. Global transcriptomic profiling following induction of CyaR expression suggests that ompX mRNA is the primary target of this sRNA under standard growth conditions. The results of phylogenetic and mutational analyses suggest that a conserved RNA hairpin of CyaR, featuring a C-rich apical loop, acts to sequester the Shine-Dalgarno sequence of ompX mRNA and to inhibit translational initiation. We have also discovered that cyaR expression is tightly controlled by the cyclic AMP receptor protein, CRP. This represents a new link between porin repression and nutrient availability that is likely to be widely conserved among enterobacteria.
منابع مشابه
The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior.
Small noncoding regulatory RNAs (sRNAs) play a key role in regulating the expression of many genes in Escherichia coli and other bacteria. Many of the sRNAs identified in E. coli bind to mRNAs in an Hfq-dependent manner and stimulate or inhibit translation of the mRNAs. Several sRNAs are regulated by well-studied global regulators. Here, we report characterization of the CyaR (RyeE) sRNA, which...
متن کاملA small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome.
The Salmonella pathogenicity island (SPI-1) encodes approximately 35 proteins involved in assembly of a type III secretion system (T3SS) which endows Salmonella with the ability to invade eukaryotic cells. We have discovered a novel SPI-1 gene, invR, which expresses an abundant small non-coding RNA (sRNA). The invR gene, which we identified in a global search for new Salmonella sRNA genes, is a...
متن کاملNoncoding RNA genes.
Some genes produce RNAs that are functional instead of encoding proteins. Noncoding RNA genes are surprisingly numerous. Recently, active research areas include small nucleolar RNAs, antisense riboregulator RNAs, and RNAs involved in X-dosage compensation. Genome sequences and new algorithms have begun to make systematic computational screens for noncoding RNA genes possible.
متن کاملAn atlas of Hfq-bound transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs.
The small RNAs associated with the protein Hfq constitute one of the largest classes of post-transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free-standing genes. Here, deep sequencing of Hfq-bound transcripts from multiple stages of growth of Salmonella typhimurium revealed a plethora of new small RNA species from within mRNA...
متن کاملA transposon-derived small RNA regulates gene expression in Salmonella Typhimurium
Bacterial sRNAs play an important role in regulating many cellular processes including metabolism, outer membrane homeostasis and virulence. Although sRNAs were initially found in intergenic regions, there is emerging evidence that protein coding regions of the genome are a rich reservoir of sRNAs. Here we report that the 5΄UTR of IS200 transposase mRNA (tnpA) is processed to produce regulatory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular microbiology
دوره 68 4 شماره
صفحات -
تاریخ انتشار 2008